Group Definition
If we have element a
and operator *
that conform the following property.
group property
- 封闭性(Closure)
$$
\text{if } a, b \in G \text{ then } a*b \in G
$$
- 结合律(Associativity)
$$
\text{if } a, b, c \in G \text{ then } (ab)c = a(bc)
$$
- 同一/恒等/单位元 (Identity)
$$
\exists e \Rightarrow \forall a, e * a = a * e = a
$$
- 逆元(Inverse)
$$
\text{if } a \in G, \exists a^{-1}, \text{then } a * a^{-1} = e
$$
different group
- |C | A | ID | IN
–|–|–|–|–
semigroup| $\checkmark$ | $\checkmark$
monoid | $\checkmark$ | $\checkmark$ | $\checkmark$
group | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$
Group Definition
https://rug.al/2023/2023-01-31-group-definition/